
machinery can physically interact with this
tail (9–11). Proteins that bind to this tail have
the potential to modulate CFTR gating by
stabilizing or disrupting its interaction with
the R domain. The NH2-terminal tail of
CFTR could serve as a target for physiologic
regulators of CFTR gating or for pharmaco-
logic maneuvers to modulate CFTR activity.
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Neurogenesis in the Neocortex
of Adult Primates

Elizabeth Gould,* Alison J. Reeves, Michael S. A. Graziano,
Charles G. Gross

In primates, prefrontal, inferior temporal, and posterior parietal cortex are
important for cognitive function. It is shown that in adult macaques, new
neurons are added to these three neocortical association areas, but not to a
primary sensory area (striate cortex). The new neurons appeared to originate
in the subventricular zone and to migrate through the white matter to the
neocortex, where they extended axons. These new neurons, which are contin-
ually added in adulthood, may play a role in the functions of association
neocortex.

The traditional view of the adult primate
neocortex is that it is structurally stable and
that neurogenesis and synapse formation oc-
cur only during development (1, 2). Yet
structural plasticity in adult brains is found
both among lower vertebrates (3) and in phy-
logenetically older mammalian structures
such as the olfactory bulb and hippocampus
(4, 5), even in primates (6, 7). Furthermore,
neurogenesis is widespread in the adult avian
brain including in the hyperstriatum (8, 9), a
structure homologous to the mammalian ce-
rebral cortex (10). Thus, it may seem para-
doxical that there is no compelling evidence
for neurogenesis in the neocortex of adult
mammals (11) and there are even strong
claims against it for primates (1). Using bro-
modeoxyuridine (BrdU) labeling, which
marks proliferating cells and their progeny
(12), combined with retrograde tract tracing
and immunohistochemistry for neuronal
markers, we attempted to resolve this para-
dox. We report that in adult macaques, new
neurons are indeed added to several regions
of association cortex where they extend ax-

ons. The presence of new neurons in brain
areas involved in learning and memory (13)
supports earlier suggestions that adult-gener-
ated neurons may play a role in these func-
tions (9, 14, 15).

We injected 12 adult Macaca fascicularis
with BrdU and used immunohistochemistry
for cell-specific markers to examine BrdU-
labeled cells in prefrontal, inferior temporal,
posterior parietal, and striate cortex (16). The
following markers were used: for mature neu-
rons, (i) NeuN (neuronal nuclei), (ii) NSE
(neuron-specific enolase), or (iii) MAP-2
(microtubule-associated protein-2); for im-
mature neurons, TOAD-64 (turned-on-after-
division 64-kD protein); for astroglia, GFAP
(glial fibrillary acidic protein) (17, 18).

In animals perfused 1 week or more after
the last BrdU injection, we observed BrdU-
labeled cells in prefrontal, inferior temporal,
and parietal cortex (Figs. 1 and 2; Table 1). In
the region of the principal sulcus in prefrontal
cortex, the majority (62% to 84%) of BrdU-
labeled cells had round or oval nuclei, mor-
phological characteristics of mature neurons
(nuclear diameter 5 10 to 25 mm). Confocal
laser scanning microscopic analysis of immu-
nostained tissue (19) indicated that a subset
of these cells expressed markers of mature
neurons (Figs. 1 through 3; Table 1). BrdU-
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labeled cells with neuronal characteristics
were found in layers 1 through 5, but not 6.
Those that were immunoreactive for MAP-2
exhibited dendritic processes (Fig. 3).

Similar proportions of BrdU-labeled cells
were co-labeled with the neuronal marker
NeuN in inferior temporal cortex (animals #4
and #5), posterior parietal cortex (#10, #11,
#12), and in the vicinity of the anterior cin-
gulate sulcus (#5). In contrast, very few
BrdU-labeled cells in these regions co-la-
beled with a marker of astroglia, GFAP (Fig.
3; Table 1). Unlike the association cortex
areas examined, in striate cortex, the few
BrdU-labeled cells found never co-labeled
with the neuronal markers, although some
were positive for GFAP (#3, #4, #10, #11,
#12). The absence of new neurons in striate
cortex was probably not the result of either
their rapid death or a longer migration time to
reach striate cortex, because they were absent
in animals perfused from 1 to 7 weeks after
the first BrdU injection.

In the animals (#1, #2) that were perfused
2 hours after a single BrdU injection, labeled
cells were observed in the subventricular
zone (svz) lining the wall of the lateral ven-
tricles (Fig. 4). In these animals, very few
BrdU-labeled cells were observed in the neo-
cortical areas examined; all had small, irreg-
ularly shaped nuclei and none expressed neu-
ronal markers. In animals that received sev-
eral BrdU injections with survival times rang-
ing from 1 to 3 weeks, we not only found
BrdU-labeled cells in the svz but also ob-
served evidence of migrating BrdU-labeled
cells in the white matter of frontal and tem-
poral sections (Figs. 4 and 5). The BrdU-
labeled cells in the white matter were elon-
gated or fusiform in shape, and those that
were co-labeled with TOAD-64 had leading
and trailing processes characteristic of mi-
grating cells (Fig. 5) (20). In animals #3, #4,
#5, and #7, these putative migrating cells
were arrayed in a stream from their likely site
of origin in the wall of the lateral ventricle,
through the white matter, to their probable
destination in frontal neocortex (Figs. 4 and
5). Elongated BrdU-labeled cells in the white
matter did not co-label with markers of ma-
ture neurons or astroglia. This putative mi-
gratory route for newly generated cells was
also observed in two additional animals that
received a single BrdU injection and were
perfused either 1 week (#8) or 2 weeks (#9)
later (Table 1, Fig. 4).

These results suggest that in the adult ma-
caque brain, new cells originate in the svz and
migrate through the white matter to certain
neocortical regions where they differentiate into
mature neurons. At a short survival time (2
hours), BrdU-labeled cells were observed in the
svz. At longer survival times (1 to 3 weeks),
BrdU-labeled cells that appeared to be migrat-
ing were observed in the white matter, and

Fig. 1. The distribution of BrdU-labeled cells in prefrontal cortex in adult ma-
caques. (A) Lateral view showing levels (1 through 4) of the coronal sections
shown in (B) and the principal sulcus region (boxed area) from which the flattened
map shown in (C) was made. (B) Coronal sections [adapted from (30)] showing the distribution of
BrdU-labeled cells in the region of the principal sulcus and the anterior cingulate sulcus from animal
#5. Solid dots represent BrdU-labeled cells that were not immunoreactive for NeuN or GFAP. Open
triangles represent BrdU-labeled cells that were immunoreactive for the neuronal marker NeuN. X
represents BrdU-labeled cells that were immunoreactive for the astroglial marker GFAP.
Dashes (2) represent BrdU-labeled cells with elongated nuclei in the white matter. Regions
below the dashed lines were not examined. ci, cingulate sulcus; lv, lateral ventricle; p, principal
sulcus. (C) Flattened map of the principal sulcus region (#3) showing the distribution of
BrdU-labeled cells (in coronal sections 1 mm apart). The dashed line represents the floor of the
sulcus. Each dot represents one BrdU-labeled cell. There were no obvious dorsal-ventral or
anterior-posterior gradients in BrdU-labeled cells in this area. A, anterior; V, ventral; D, dorsal;
P, posterior.

Fig. 2. The distribution of BrdU-labeled cells in coronal sections through inferior temporal cortex
(section 1), posterior parietal cortex (section 2), and occipital cortex (section 3) (from animal #10).
Symbols are as in Fig. 1. BrdU-labeled cells co-labeled with NeuN were not observed in striate
cortex (shown with dotted lines in section 3). a, arcuate sulcus; ca, calcarine sulcus; io, inferior
occipital sulcus; ip, intraparietal sulcus; la, lateral sulcus; lu, lunate sulcus; ot, occipito-temporal
sulcus; r, rhinal sulcus; st, superior temporal sulcus. The area above the dashed line in 1 and below
the dashed line in 2 was not analyzed.
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those with mature neuronal characteristics were
found in the neocortex. In the adult rodent, the
svz produces new cells that migrate in the ros-

tral migratory stream to the olfactory bulb,
where they differentiate into neurons (5). Our
results suggest that in the adult macaque, the

svz is the source of an additional population of
new neurons that migrate through fiber tracts to
neocortical regions.

To establish further the neuronal identity of
the new cells and explore their cortical connec-
tions, we carried out a combined BrdU labeling
and fluorescent retrograde tracing study in ani-
mals #10, #11, and #12 (21). Several weeks
after BrdU administration, these animals were

Table 1. Characteristics of experimental animals and BrdU-labeled cells in the principal sulcus region. All
animals, except #7, were given one to five i.p. injections (injs.) daily of 75 to 100 mg/kg BrdU. For all
animals but #7, survival time represents the time after the last BrdU injection when the monkey was
perfused. Animal #7 received four i.v. injections of 100 mg/kg BrdU, each separated by 1 week with the
last injection 24 hours before perfusion. Animals #1 to #6 were also used in a different study of
neurogenesis in the dentate gyrus (7). The stereological optical dissector method was used to estimate
the number of BrdU-labeled cells/mm3 (19). The percentages of BrdU-labeled cells that expressed specific
markers were each obtained from a sample of 100 BrdU-labeled cells per marker per animal. As
mentioned in the text and in (22), three additional male animals (#10, #11, #12) were used for a
retrograde tracer study and for identifying new neurons.

No.
(sex)

Age
(years)

BrdU
injs.

Survival
time

Percent BrdU-labeled cells Number of
BrdU-labeled

cells/mm3NeuN NSE MAP-2 GFAP

1 (m) 5 1 2 hours 0 0 0 20 0.4
2 (m) 16 1 2 hours 0 0 0 31 0.6
3 (m) 5 5 2 weeks 52 43 37 5 26.5
4 (f) 7 5 2 weeks 47 39 33 8 13.2
5 (m) 10 3 1 week 38 32 26 4 17.6
6 (f) 15 5 2 weeks – 28 – 2 13.7
7 (m) 15 4 24 hours 53 48 29 3 15.6
8 (m) 5 1 1 week – – – – 7.2
9 (m) 5 1 2 weeks – – – – 14.4

Fig. 3. Confocal laser scan-
ning microscopic images of
BrdU-labeled cells in the
adult macaque neocortex.
(A) Arrow: prefrontal cell
with neuronal morphology
co-labeled for BrdU (blue
nuclear stain, cascade blue)
and MAP-2 (green cyto-
plasmic stain, Alexa 488).
Arrowheads: BrdU-nega-
tive, MAP-2 positive cells
(animal #4). (B) Arrow:
prefrontal cell with neuro-
nal morphology co-labeled
for NeuN (green nuclear
and cytoplasmic stain, Al-
exa 488) and BrdU (red nu-
clear stain, Alexa 568). Ar-
rowhead: cell positive for
BrdU, not for NeuN. Aster-
isk: cells positive for NeuN,
negative for BrdU (#3). (C)
Arrow: prefrontal cell with
neuronal nuclear morphol-
ogy positive for BrdU (red
nuclear stain), not stained
for the astroglial marker
GFAP. Arrowhead: cell with
astrocyte morphology neg-
ative for BrdU, positive for
GFAP (green stain) (#5).
(D) Arrow: prefrontal cell in
ventral principal sulcus
with neuronal morphology
co-labeled with BrdU (red nuclear stain) and Fluoro-Emerald (green cytoplasmic marker). The tracer was
injected into the dorsal bank of principal sulcus (#11). This cell was outside of the injection site diffusion
zone. Arrowhead: BrdU-positive cell (red nuclear stain) not labeled with Fluoro-Emerald. Asterisk:
Fluoro-Emerald–labeled cell which is BrdU-negative. (E) Arrow: posterior parietal cell co-labeled for
NeuN (green nuclear and cytoplasmic stain) and BrdU (red nuclear stain). This cell has the morphology
of a pyramidal cell (#12). Arrowhead: NeuN-positive, BrdU-negative cell. (F) Arrow: posterior parietal
cell co-labeled with BrdU (red nuclear stain) and the retrograde tracer Fast Blue (blue cell-body marker).
The tracer was injected into area 7A. This cell was outside of the injection site diffusion zone (#12).
Arrowhead: BrdU-labeled cell not labeled with Fast Blue. Asterisk: Fast Blue–labeled cell not co-labeled
with BrdU. Scale in (B) 5 20 mm and applies to all frames.

Fig. 4. The distribution of
BrdU-labeled cells in ani-
mals that were perfused 2
hours (top section, animal
#1), 1 week (middle sec-
tion, #8), and 2 weeks (bottom section, #9)
after a single BrdU injection, showing the pu-
tative migration of new cells from the svz to
the principal sulcus. Area within the dashed
lines represents analyzed region. Open circles
represent BrdU-labeled cells in the svz. Dashes
(–) represent BrdU-labeled cells in the white
matter, the majority of which had fusiform
nuclei. Solid dots represent BrdU-labeled cells
in the cortex surrounding the principal sulcus.
Vertical line above lateral view of the brain
marks the approximate level of the section
shown for each of the three animals.
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injected with Fluoro-Emerald in lateral prefron-
tal cortex (Area 46) and with Fast Blue in
posterior parietal cortex (Area 7A) (22). These
injection sites were chosen because both are
known projection targets of neurons in areas in
which we had found BrdU-labeled cells, includ-
ing lateral prefrontal, posterior parietal, and in-
ferior temporal cortex (23). We observed cells
labeled with BrdU that were retrogradely filled
with either Fluoro-Emerald (in frontal cortex) or
Fast Blue (in parietal cortex), providing further
evidence that some new cells were neurons.
Although tracer was transported from the injec-
tion sites to non–BrdU-labeled cells in frontal,
parietal, and inferior temporal cortex, cells co-
labeled with BrdU and tracer were only found
within 11 mm of the border of the diffusion zone
surrounding the injection sites. Thus, adult-gen-
erated cells in prefrontal and posterior parietal
cortex extend short axons and may be incorpo-
rated into the local circuitry, although the exis-
tence of longer connections cannot be ruled out.

Although most neocortical neurons are gen-
erated prenatally (24), our findings indicate that
neurons are added to primate neocortex in
adulthood. We observed a considerable number
of BrdU-labeled cells with neuronal character-
istics, but the numbers generated daily in adult-
hood are presumably much higher because
BrdU is only available for uptake for 2 hours
after each injection (12). Thus, a single BrdU
injection labels a fraction of the cells that divide
in 24 hours. Furthermore, it is unlikely that the
cells we observed incorporated BrdU during
apoptosis, a phenomenon observed in both the
developing neocortex and non-neuronal sys-
tems (25), because many labeled cells were
present in neocortex weeks after the last BrdU
injection without any signs of degeneration.

Our results are at variance with previous
[3H]thymidine autoradiographic studies which
claim no neurogenesis in the adult primate neo-
cortex (1). This discrepancy may be due to
methodological differences. First, since 3H pen-

etrates only 1 to 3 mm into a tissue section,
[3H]thymidine autoradiography may underesti-
mate the number of new cells (26). Further-
more, the previous study used much longer
survival times (3 months to 6 years) for 9 of the
12 animals. New cells that incorporated
[3H]thymidine and differentiated into neurons
may have died in the interval between injection
and perfusion. This is supported by findings
that many adult-generated hippocampal neu-
rons die in animals not exposed to complex
experiences (17, 27). Finally, all of the adult
animals in the previous study were pregnant at
the time of BrdU injection; pregnancy increases
the level of circulating glucocorticoids (28),
which in turn may inhibit cell proliferation (29).

Prefrontal, posterior, parietal, and inferior
temporal cortex are areas involved in behavioral
plasticity (13). Thus, it is conceivable that the
new neurons added to these areas in adulthood
might play a special role in such functions.
Perhaps immature neurons are capable of under-
going structural changes rapidly and therefore
may serve as a substrate for learning (15). Fur-
thermore, the addition of new neocortical neu-
rons throughout adulthood provides a continu-
um of neurons of different ages that may form a
basis for marking the temporal dimension of
memory. The idea that late-generated neurons
play an important role in learning and memory
was proposed previously by Altman (14), and,
for the avian forebrain, by Nottebohm (9), but
direct evidence is still lacking (15).
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Yeast Gene for a Tyr-DNA
Phosphodiesterase that Repairs

Topoisomerase I Complexes
Jeffrey J. Pouliot, Kevin C. Yao, Carol A. Robertson, Howard A. Nash*

Covalent intermediates between topoisomerase I and DNA can become dead-
end complexes that lead to cell death. Here, the isolation of the gene for an
enzyme that can hydrolyze the bond between this protein and DNA is described.
Enzyme-defective mutants of yeast are hypersensitive to treatments that in-
crease the amount of covalent complexes, indicative of enzyme involvement in
repair. The gene is conserved in eukaryotes and identifies a family of enzymes
that has not been previously recognized. The presence of this gene in humans
may have implications for the effectiveness of topoisomerase I poisons, such
as the camptothecins, in chemotherapy.

Topoisomerases are cellular enzymes that are
crucial for replication and readout of the ge-
nome; they work by breaking the DNA back-

bone, allowing or encouraging topological
change, and resealing the break (1). The en-
zymes are efficient because DNA breakage is
accompanied by covalent union between pro-
tein and DNA to create an intermediate that is
resolved during the resealing step. This
mechanism, although elegant, also makes to-
poisomerases potentially dangerous. If the
resealing step fails, a normally transient break
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